
From:
To: Moody, Dustin (Fed)
Cc: Perlner, Ray A. (Fed)
Subject: Re: I think I figured out how to extend our cubic ABC attack to the characteristic 2 case
Date: Tuesday, January 31, 2017 2:10:55 PM

Lol

I have no idea what my username for that machine is. None. It was always weird, and even if
I knew it I don't know the password as this point. I'll have to fix the issue when I'm their in
person.

On Tue, Jan 31, 2017 at 2:07 PM, Moody, Dustin (Fed) <dustin.moody@nist.gov> wrote:

The basis SAGE returns to me is in reduced form. Meaning most of the elements in the
vectors are 0.

I probably could remote in, but the paper I have how to do so is in my office!

Ray - enjoying the conversation?

From: Daniel Smith
Sent: Tuesday, January 31, 2017 2:06:20 PM

To: Moody, Dustin (Fed)
Cc: Perlner, Ray (Fed)
Subject: Re: I think I figured out how to extend our cubic ABC attack to the characteristic 2 case

Ah! The dreaded cannot-remote-in-to-the-magma-machine-because-it-is-way-too-
complicated curse.

On Tue, Jan 31, 2017 at 2:02 PM, Moody, Dustin (Fed) <dustin.moody@nist.gov> wrote:

I am working from home today

From: Daniel Smith
Sent: Tuesday, January 31, 2017 2:00:01 PM

To: Moody, Dustin (Fed)
Cc: Perlner, Ray (Fed)
Subject: Re: I think I figured out how to extend our cubic ABC attack to the characteristic 2 case

(b) (6)

(b) (6)

(b) (6)

I mean that the matrix whose rows are generating entries of the kernel (i.e. a basis) is put
into reduced row echelon form, so that most of the entries are zero vectors. If you can use
magma on that machine in the lab, then you can run my code (by command line it is just
>magma cabc.mgm). It produces results that depend on only one basis vector. That
seems strange to me.

On Tue, Jan 31, 2017 at 1:57 PM, Moody, Dustin (Fed) <dustin.moody@nist.gov> wrote:

you mean, instead of all the vectors in the kernel, just the basis vectors? Okay, I am
running that. Doesn't seem to be going any faster than normal for me.

What do you mean reduced basis (rre form basis?)??

From: Daniel Smith
Sent: Tuesday, January 31, 2017 1:48:34 PM

To: Moody, Dustin (Fed)
Cc: Perlner, Ray (Fed)
Subject: Re: I think I figured out how to extend our cubic ABC attack to the characteristic 2
case

Isn't it odd for a vector in the basis of the kernel to produce a low rank map? There must
be something weird going on. Can you try with your sage version to just look at the
basis vectors and see if you produce any results?

Cheers!
Daniel

On Tue, Jan 31, 2017 at 1:41 PM, Moody, Dustin (Fed) <dustin.moody@nist.gov>
wrote:

I read through your code and didn't see anything wrong.

If it is fast, do lots of trials for q=4,s=4 and see what the average is. Yes, the number I
was reporting is the value of 'j'.

From: Daniel Smith
Sent: Tuesday, January 31, 2017 1:12:42 PM

To: Moody, Dustin (Fed)
Cc: Perlner, Ray (Fed)

(b) (6)

(b) (6)

Subject: Re: I think I figured out how to extend our cubic ABC attack to the characteristic 2
case

I'm 1000 steps behind you. Average of 2000 means average value of "j" in your code?

Something interesting is happening with my code. I can't guarantee that it is doing the
right thing, since I basically tried to translate your code into magma (I translated the
slower code for G, but I don't think that should be more than a few milliseconds
difference per iteration, so a couple of seconds difference for the entire calculation (so
not worth it). The input to G are still vectors with first half zero. I ran it without
generating elements in the right kernel, but only inputting the basis elements. It
seemed to spit out an answer quickly, which I don't quite understand. It makes me
think that my code is wrong somehow.

I'm attaching what I've done. Maybe you can spot issues. The one thing I know of is
the kernel thing, but if it's correct and still gives answers, that's interesting.

Cheers,
Daniel

On Tue, Jan 31, 2017 at 12:48 PM, Moody, Dustin (Fed) <dustin.moody@nist.gov>
wrote:

You are right to question things. I make no guarantee the code I write is optimal!

M.right_kernel() returns a vector space, with the degree, dimension, and a basis
matrix.

>M.right_kernel()
Vector space of degree 32 and dimension 1 over Finite
Field in z of size
2^2
Basis matrix:
[0 0 0 1 0 z 1 z + 1 0
0 0 1
0 z 1 z + 1 0 0 0 0 0 0
0 0
0 0 0 1 0 z 1 z + 1]

MK.list() creates a list of all the elements in the kernel. I do agree it is probably
quite slow and eats up a bunch of memory. I will try changing it and see how it runs.

By the way, my most updated stats for q=4 and s=4 are an average of just under
2000. I think Ray predicted 2300. For s=5, 3 trials have completed, for an average
of 7800. Ray predicted around 9000. I don't know that we need to put detailed
computational evidence in, since we don't have a lot. But we could just say we

performed some experiments as a sanity check, which seemed to corroborate our
findings.

Dustin

From: Daniel Smith
Sent: Tuesday, January 31, 2017 12:38:28 PM
To: Moody, Dustin (Fed)
Cc: Perlner, Ray (Fed)

Subject: Re: I think I figured out how to extend our cubic ABC attack to the characteristic
2 case

What does M.right_kernel() return? A basis?

If so, what is MK.list()? Is it a list of basis vectors? Is it a list of every element in
the right kernel? If it is the former, then why do you need to test whether t is zero,
and if the latter, wouldn't that slow down the algorithm and eat up a lot of memory?

On Tue, Jan 10, 2017 at 12:09 PM, Daniel Smith wrote:
Thanks. I'll try to look at this this week.

Cheers!

On Tue, Jan 10, 2017 at 11:12 AM, Moody, Dustin (Fed)
<dustin.moody@nist.gov> wrote:

For the faster code, replace the definition of G(v1,v2) with the following:

def Polylist():

 EL2=matrix(R,2*s^2,s^2,lambda i,j:0)

 # elements of E - cubic's

 for h in range(0,2*s^2):

 enew=EL[h]

 for k in range(1,s^2+1):

 c3=enew.coefficient(X[k]^3)

 c2=enew.coefficient(X[k]^2)

 c1=enew.coefficient(X[k]^1)

 poly=3*c3*X[k]^2+2*c2*X[k]+c1

(b) (6)

(b) (6)

 EL2[h,k-1]=poly(x1=0,x2=0,x3=0,x4=0,x5=0,x6=0,x7=0,x8=0)

 return EL2

EL2=Polylist()

def G(v1,v2):

 mnew=matrix(K,2*s^2,2*s^2,lambda i,j:0)

 for h in range(0,2*s^2):

 for k in range(1,s^2+1):

 poly=EL2[h,k-1]

 mnew[h,k-1] = poly(x9=v1[0,8],x10=v1[0,9],x11=v1[0,10],x12=v1[0,11],x13=v1
[0,12],x14=v1[0,13],x15=v1[0,14],x16=v1[0,15])

 mnew[h,k+s^2-1] = poly(x9=v2[0,8],x10=v2[0,9],x1
1=v2[0,10],x12=v2[0,11],x13=v2[0,12],x14=v2[0,13],x15=v2[0,14],x16=v2[0,15])

 return mnew

Define a new function func (which is used to make the first half of v1 and v2 be zero,
and the rest random)

def func(i):

 if i<=8:

 return 0

 return K.random_element()

V=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

flg=0

while(flg==0):

 for j in range(0,10000):

 if j%100==0:

 print V

 v1=matrix(K,1,s^2,lambda i,j: func(j))

 v2=matrix(K,1,s^2,lambda i,j: func(j))

 M=G(v1,v2).transpose()

 MK=M.right_kernel()

 mk=s^2

 for t in MK.list():

 if t!=0:

 sm1=0

 for i in range(0,2*s^2):

 sm1=sm1+t[i]*lincombDDF(i,v1)

 sr=sm1.rank()

 mk=min(mk,sr)

 if mk==2*s:

 print j,t

 print v1

 print v2

 flg=1

 break

 V[mk]=V[mk]+1

 if flg==1:

 break

From: Daniel Smith
Sent: Tuesday, January 10, 2017 10:15 AM
To: Moody, Dustin (Fed) <dustin.moody@nist.gov>
Cc: Perlner, Ray (Fed) <ray.perlner@nist.gov>

Subject: Re: I think I figured out how to extend our cubic ABC attack to the
characteristic 2 case

(b) (6)

Yeah, I got a note a week or two ago telling me the submission deadline for
PQCRYPTO. I think that this was all done irresponsibly late, but it's what we
have to deal with.

At this point, I think that this enhancement would be appropriate for submission
there. What do you guys think?

Can you send me your code? I might be able to write something raw in C that's
faster. It will be easier to tinker with yours than to start from scratch. Of
course, magma might be reasonable as well, but for now I don't have access
either here or at NIST (due to the incompetence of several individuals, including
myself, all of whom are in Louisville [surprisingly?]).

I'd like to get some time to work on the extension field cancellation now that
stress at not having broken it is setting in, but I doubt I'll have time. I'm trying
to get two of my students to complete projects and hopefully submit them as
well. I'll try to get back to you if I can on that.

Cheers and Happy New Year!

On Mon, Jan 9, 2017 at 3:10 PM, Moody, Dustin (Fed)
<dustin.moody@nist.gov> wrote:

Daniel,

 FYI, today Ray and I worked on this a bit. We modified our previous code in
SAGE to do what Ray wants it to do. We’re running some experiments to verify it is
behaving as it should. Preliminary indications are that things looks like Ray
predicted. He estimated it would take around 2500 trials to find a rank 8 matrix for
q=4 and s=4. My program is slow, but it did it in 4300 trials the first time, taking
around an hour and a half. I’m doing more experiments to see if we average closer
to 2500. If I were a good programmer this might be quicker, but alas….

Also, note the submission deadline to PQCrypto is Valentines Day, Feb. 14th.

Dustin

From: Daniel Smith
Sent: Friday, December 16, 2016 12:02 PM
To: Moody, Dustin (Fed) <dustin.moody@nist.gov>; Perlner, Ray (Fed)
<ray.perlner@nist.gov>

Subject: Re: I think I figured out how to extend our cubic ABC attack to the
characteristic 2 case

Sorry for being so slow. I'm working on about 5 projects and the limit of my
ability is about .5 projects. I'll try to give this a look tonight.

When the result is more mature, I would like to talk to you about a project I'm
doing with one of my students on a complexity theoretic proof of security for
"big structure" multivariate schemes. I'd like an impartial audience to let me
know if it seems too BS, or is essentially equivalent, in terms of credibility, to
other types of reduction in pqc.

Another random thought, we can think of an ideal I in F[x1,...,xn] as a lattice
in a way. If F is finite of order q and I contains the field equations, x^q-x, then
I is radical, and I(V(I))=I by the nullstellensatz. Furthermore, since the field
equations are in I, V(I) is in F^n, and not merely in a vector space over an
algebraic closure of F. In this case, since V(I) is finite, we can express it as a
disjoint union of singleton sets, and so I is the intersection of the
corresponding maximal ideals in F[x1,...,xn]. In the special case of
encryption, we expect that V(I) is a singleton and so I is maximal. Then I=
<x1-a1,x2-a2,...,xn-an>. This is a good basis. If we have a bad basis (which is
what we typically have for mpk schemes) in general it is hard to find a good
basis. So what if we use some interesting metric, such as the Lee metric on
the coefficients of the monomials of a polynomial f. Can we do something
like solve a closest vector problem given a good basis which is hard to solve
with the bad basis? Bo-Yin had a lattice-like multivariate scheme, but the
linear part served as the lattice and the quadratic part was noise. Since
F[x1,...,xn] is an integral domain just the same as Z, why can't we accomplish
something similar with a more general integral domain?

Cheers,
Daniel

On Fri, Dec 16, 2016 at 10:16 AM Perlner, Ray (Fed)
<ray.perlner@nist.gov> wrote:

(b) (6)

Oh. Forgot to note, whenever I say f, I mean the homogeneous quadratic part (in
the regular ABC case) or homogeneous cubic part (in the cubic ABC case.)

From: Perlner, Ray (Fed)
Sent: Friday, December 16, 2016 10:06 AM
To: Moody, Dustin (Fed) <dustin.moody@nist.gov>; Daniel Smith

Subject: RE: I think I figured out how to extend our cubic ABC attack to the
characteristic 2 case

I have a much simplified method for recovering the missing linear constraints on
t in the minrank equations for characteristic 2. I think the complexity of our
attack will be q^(s+2)s^(2 omega) field operations for both even and odd
characteristic.:

In the quadratic case, in addition to requiring Df(u) = 0 and Df(v) = 0 for band
kernel vectors u and v, we can also require f(u) = 0 and f(v) = 0.

In the cubic case, instead of requiring that D^f(u, v) = 0, we can require that
d/dx_i(f) evaluated at u and v is 0.

d/dx_i is just a formal derivative d/dx_i (x_i x_j x_k) is x_j x_k for j and k not
equal i.

 d/dx_i (x_i ^2 x_j) is 2x_i x_j for j not equal i.

 d/dx_i (x_i ^3) is 3x_i ^2.

I believe that all 2s^2 linear constraints you get this way are linearly
independent for characteristic 2, but for characteristic 3, we also need to throw
in

f(u) = 0 and f(v) = 0. Doing so will save us a factor of q work.

(b) (6)

From: Moody, Dustin (Fed)

Sent: Monday, December 12, 2016 2:45 PM
To: Daniel Smith ; Perlner, Ray (Fed)
<ray.perlner@nist.gov>

Subject: RE: I think I figured out how to extend our cubic ABC attack to the
characteristic 2 case

Greetings to you, fellow human colleague. I am inclined to acquiesce to your
request.

Any chance you will be coming to NIST anytime soon? If not, we can always
communicate through other methods, such as a google hangout with no audio!

From: Daniel Smith
Sent: Monday, December 12, 2016 2:42 PM
To: Perlner, Ray (Fed) <ray.perlner@nist.gov>
Cc: Moody, Dustin (Fed) <dustin.moody@nist.gov>
Subject: Re: I think I figured out how to extend our cubic ABC attack to the
characteristic 2 case

Hi, human colleagues,

Would you like to develop these ideas more fully? I think that we'll need to
get some running examples to see the cost of the modification Ray
suggested. I'm not sure, offhand if there is any special algebraic structure
relating to this or if this is merely a way of breaking the symmetry, as Ray
suggested, that produces a benefit because the attack is exponential-ish.
 (I'm always trying to tie attack ideas to specific principles to propose
security metrics.) I'm going to start thinking about that here at the end of
the year.

(b) (6)

(b) (6)

It might be good also if we can enrich our paper with more data for an
eprint version.

Cheers,

Daniel

On Thu, Sep 15, 2016 at 3:11 PM, Perlner, Ray (Fed)
<ray.perlner@nist.gov> wrote:

True enough. It’s probably offset somewhat, but not entirely, by the fact that
operations over F_2 are cheaper than operations over F_q if you do them
right. In any event, the cost is only polylog(q). It should be more than made up
for by replacing the q^{2s+6} with q^{s+2}

From: Daniel Smith
Sent: Thursday, September 15, 2016 2:50 PM
To: Perlner, Ray (Fed) <ray.perlner@nist.gov>
Cc: Moody, Dustin (Fed) <dustin.moody@nist.gov>
Subject: Re: I think I figured out how to extend our cubic ABC attack to the
characteristic 2 case

Wouldn't that hurt the linear algebra steps considerably, though? The
search space should be the same size. I guess that it is still better to have
the extra constraint, though, but there is still a slow down compared to
higher characteristics.

On Thu, Sep 15, 2016 at 2:37 PM, Perlner, Ray (Fed)
<ray.perlner@nist.gov> wrote:

Recall that the problem was that you couldn’t impose a meaningful
linear constraint on t_i by saying sum (t_i D^2f_i(x1, x1)) = 0 due to
the symmetry of the differential. The solution is to use something that
looks like a differential, but doesn’t have that symmetry.

Instead of having Df(x,a) = f(x+a) - f(x) - f(a) + f(0), pick an element
of the base field, s and use D_{s}f(x,a) = f(sx + a) - sf(x) - f(a) + sf(0).

(b) (6)

Note that while D_{s}D_{t}f(x,a,b) does not make a cubic map
trilinear over the base field, it does make it trilinear over F_2, so we
can still use D_{s}D_{t} to do minrank (it’s just that the linear algebra
will be over F_2 instead of F_q.)

